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Abstract

In this work, the methods of volume average and multiple scale expansion are employed to obtain one
macroscopic equation governing thermal dispersion in a rigid homogeneous porous medium. The structure of the

real porous medium is described here by a spatially periodic model. The theoretical longitudinal thermal dispersion
coe�cient for a strati®ed system is compared with numerical data obtained from a random walk method, and good
agreement is achieved. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the macroscopic description of heat transfer in
porous media, the convection-di�usion phenomena (or

dispersion) in a porous medium are generally analyzed

using an up-scaling method, in which the complicated
local situation (the transport of energy by convection

and di�usion at pore scale) is described at the macro-

scopic scale. At this level, the dispersion can be charac-
terized by the e�ective thermal dispersion tensor.

There are several di�erent ways of up-scaling for

dispersion in a porous medium: among others, the

method of moments [1], the volume average method
[2], the homogenization method [3] and the ensemble

average method [4]. In this work, we shall use the

volume average and homogenization methods to
obtain a one-equation model that describes the thermal

dispersion in a homogeneous porous medium.

There has been some controversy in the literature

[2,5] regarding the applicability of one-equation models
to study the thermal dispersion in a porous medium.
One-equation models often assume that the ¯uid and

solid are both at same intrinsic average temperature
hTi � hTbib � hTsis: But as demonstrated below, this
condition is impossible to achieve for this type of situ-

ation. Nevertheless, it is still possible to derive a one-
equation model for the average temperature of the
medium.

How can this average temperature be de®ned for the
whole medium (that is to say, for both the b-phase
and the s-phase)? As the temperature is an intensive
property from a thermodynamic point of view, it is

justi®able to average an extensive property, the energy
(or more precisely here the enthalpy), rather than the
temperature because as we shall show further on, the

mean temperature deviations are not necessarily zero.
By replacing this condition with another, we can use
the volume average method to get a one-equation

model with a new e�ective thermal dispersion tensor
and closure problem.
In order to demonstrate the pertinence of the physi-

cal assumptions used in deriving the one-equation
model based on the volume average method, we prove
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that the same result can be obtained using the more

mathematical framework of the homogenization
method.
Lastly, we compare the calculated values of the

longitudinal thermal dispersion coe�cient with those
determined by a numerical experiment using the ran-
dom walks of thermions for the simple case of a strati-
®ed medium for which the closure problem can be

solved analytically.

2. Governing microscopic equations

The transport of energy at the pore level is described
by the following equations and boundary conditions
for the ¯uid �b-phase) and solid �s-phase)

�rcp �b
@Tb

@ t
� �rcp �b~vb � rTb � r �

ÿ
kbrTb

� �1�

�rcp �s
@Ts

@ t
� r � �ksrTs � �2�

Tb � Ts at Abs �3�

~nbs � kbrTb � ~nbs � ksrTs at Abs �4�

and with appropriate initial and boundary conditions

for Tb and Ta at t � 0 and at the area of the entrances
and exits for the b-phase, Abe, and for the s-phase,
Ase:
To describe the heat transfer completely, the

equations of continuity and motion have to be intro-
duced for the ¯uid phase. Here, we assume that the

physical properties of the ¯uid and solid are constant.
The hydrodynamic problem can then be solved inde-
pendently.

Nomenclature

A area
cp heat capacity

D e�ective hydrodynamic dispersion tensor
e thickness of solid
~f vector ®eld mapping rhTi onto ~Tb
~g vector ®eld mapping rhTi onto ~Ts
h thickness of ¯uid

H total height of unit cell
H enthalpy
I identity tensor

k thermal conductivity
Keff e�ective thermal dispersion tensor
Kxx longitudinal coe�cient of the e�ective ther-

mal dispersion tensor

` characteristic length associated with the
microscopic scale

L characteristic length associated with local

volume average quantities
~n outwardly directed unit normal vector
p probability of passage

Pe PeÂ clet number
Q energy source
~r vector position

t time
tc characteristic time for convection
td characteristic time for di�usion
T point temperature
~T spatial deviation of the temperature
u velocity component in the x-direction
~v vector velocity

vref reference velocity

V averaging volume
x spatial macroscopic coordinate
y spatial microscopic coordinate

Greek symbols
a thermal di�usivity

gb ratio eb�rcp�b=hrcpi
d Dirac distribution
~d

c
displacement due to convection

~d
d

displacement due to di�usion
dt time step
dx spatial displacement
dy spatial displacement

E scale factor �E � `=L�
e volume fraction
r density

t tortuosity tensor

Subscripts, superscripts and other symbols

O�� order of magnitude
b ¯uid-phase
be ¯uid-phase entrances and exits

bs b±s interface
b4s from the ¯uid into the solid
s solid-phase
se solid-phase entrances and exits

s4b from the solid into the ¯uid
hi spatial average
hib intrinsic b-phase average

his intrinsic s-phase average
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3. Volume average method

To obtain the macroscopic equation, we use the
average volume method [2]. In this method, the macro-
scopic quantities are regularized spatial ®elds obtained

by spatial averaging of the microscopic quantities at
the pore level. In the literature, we see how these
macroscopic quantities, free of the ¯uctuations associ-

ated with the small-scale, can be obtained for ordered
and disordered systems from an appropriate choice of
weighting functions [5].

For practical purposes, we will use a spatially
periodic porous medium as model, i.e. the whole
medium can be generated by translating a unit cell of
arbitrary shape in three independent directions of

space. For this reason, we shall use the usual de®-
nitions of the average volume method as we consider
only periodic systems here.

Two volume averages are employed in this paper:
the ®rst is the phase average, de®ned by

hcb, si �
1

V

�
Vb, s

cb, s dV: �5�

and the second is the intrinsic phase average

hcb, sib, s �
1

eb, s
hcb, si �

1

Vb, s

�
Vb, s

�
Vb, s

cb, s dV �6�

The ®rst average is the quantity that appears in the
averaging theorem

hrcb, si � rhcb, si �
1

V

�
Abs

cb, s ~nbs dA �7�

or in the divergence form

hr � cb, si � r � hcb, si �
1

V

�
Abs

cb, s � ~nbs dA �8�

for a cb, s, vector or tensor de®ned in the b or s
phase.

3.1. Average temperature of the medium

Based on the arguments described in the introduc-
tion, the average temperature of the medium is intro-
duced by averaging the enthalpy. Using H to
designate the enthalpy per unit mass, the de®nition of

the average enthalpy of the medium is clearly given by:

hrihHi � ebrbhHbib � ebrshHsis �9�

with hri � ebrb�esrs:
Considering the calorimetric equation for each phase

(for example, Hb � cpbTb� and postulating the same
type of relation for the whole medium, the average

temperature hTi is then de®ned by:

hrihcpihTi � hrcpihTi

� eb�rcp �bhTbib � es�rcp �shTsis: �10�

Requiring that the average temperature hTi is equal to

the temperature of both phases in the case of the ther-
mal equilibrium �hTbib � hTsis�, we get the de®nition
of the heat capacity per unit volume:

hrcpi � eb�rcp �b�es�rcp �s: �11�

3.2. Average equations

Applying the volume average method to Eqs. (1)
and (2) in the case of a homogeneous medium for the
b-phase, we get

�rcp �b
�
eb
@ hTbib
@ t
r � hTb~vbi

�
� r �

�
ebkbrhTbib

�
� r �

"
kb

 
1

V

�
Abs

~nbsTb dA

!#

� kb

 
1

V

�
Abs

~nba � rTb dA

!
�12�

and, for the s-phase

�rcp �ses
@ hTsis
@ t

� r � �esksrhTsis �

� r �
"
ks

 
1

V

�
Abs

~nsbTs dA

!#

� ks

 
1

V

�
Abs

~nsb � rTs dA

!
:

�13�

Let us now introduce the following decomposition for

the local velocity

~vb � h~vbib � ~~vb �14�

Using this equation in Eq. (12), we get
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eb�rcp �b
�
@ hTbib
@ t

� h~vib � rhTbib � r � hTb
~~vbib

�
� r �

�
ebkbrhTbib

�
� r �

"
kb

 
1

V

�
Abs

~nbsTb dA

!#

� kb

 
1

V

�
Abs

~nbs � rTb dA

!
:

�15�

Here, we have used the fact that hh~vbibib � h~vbib and
also the fact that, due to the adherence condition for
the ¯uid in the Abs interface:

hr � ~vbi � r � h~vbi � 1

V

�
Abs

~vb � ~nbs dA � ebr � h~vbib � 0:

In addition, let us de®ne the pore-scale deviations for
the b-phase and the s-phase as

Tb � hTi � ~Tb, �16�

Ts � hTi � ~Ts, �17�

where hTi represents the spatial average temperature of
the medium. If we replace these deviations in Eq. (10),

we get the following constraint for the spatial devi-
ation temperatures

eb�rcp �bh ~Tbib � es�rcp �sh ~Tsis � 0: �18�

One can now introduce the ®rst decomposition (16) in
Eq. (15) to obtain

eb�rcp �b
�
@ hTi
@ t
� h~vbib � rhTi

�

� r � ÿebkbrhTi�� r � "kb 1

V

�
Abs

~nbshTi dA

!#

� kb

 
1

V

�
Abs

~nbs � rhTi dA

!

� r �
"
kb

 
1

V

�
Abs

~nb ~Tb dA

!#

� kb

 
1

V

�
Abs

~nbs � r ~Tb dA

!

ÿ eb�rcp �b
�
h~vbib � rh ~Tbib � r � h ~Tb

~~vbib
�

ÿ eb�rcp �b
@ h ~Tbib
@ t

� r �
�
ebkbrh ~Tbib

�
:

�19�

Here, we have assumed that, as a ®rst approximation,
h ~~vbi � 0; but we do not consider that h ~Tbib�h ~Tbis�0:

Since hTi and rhTi can be considered constant with
respect to integration over Abs [2], they can be
removed from the integrals and the volume average

theorem can be applied to yield

�
Abs

~nbshTi dA � hTi
 �

Abs

~nbs dA

!
� ÿhTireb � 0,

�
Abs

~nba � rhTi dA � rhTi �
 �

Abs

~nbs dA

!
� ÿrhTi � reb � 0:

Then we can write

eb�rcp �b
�
@ hTi
@ t
� h~vbib � rhTi

�

� r � ÿebkbrhTi�� r � "kb 1

V

�
Abs

~nbs ~Tb dA

!#

� kb

 
1

V

�
Abs

~nbs � r ~Tb dA

!

ÿ eb�rcp �br � h ~Tb~vbib ÿ eb�rcp �b
@ h ~Tbib
@ t

� r �
�
ebkbrh ~Tbib

�
:

�20�

A similar procedure can be followed to obtain the ana-

logous form for the s-phase

es�rcp �s
@ hTi
@ t

� r � �esksrhTi� � r �
"
ks

 
1

V

�
Abs

~nsb ~Ts dA

!#

� ks

 
1

V

�
Abs

~nsb � r ~Ts dA

!

ÿ es�rcp �s
@ h ~Tsis
@ t

� r �
ÿ
esksrh ~Tsis

�
: �21�

Eqs. (20) and (21) can now be added to obtain a single
equation
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hrcpi@ hTi
@ t
� eb�rcp �bh~vbib � rhTi

� r �
"ÿ

ebkb � esks
�rhTi

�
ÿ
kb ÿ ks

�
V

�
Abs

~nbs ~Tb dA

#
ÿ eb�rcp �br � h ~Tb~vbib

� r �
�
ebkbrh ~Tbib � esksrh ~Tsis

�
�22�

where we have taken into account the boundary con-

ditions (3) and (4).

3.3. Closure problem

To derive a governing equation for ~Tb, we begin by

using the decomposition equation (16) in the micro-
scopic equation (1) for the b-phase

�rcp �b
@ ~Tb

@ t
� �rcp �b~vb � r ~Tb ÿ r �

�
kbr ~Tb

�
� ÿ�rcp �b

@ hTi
@ t
ÿ �rcp �b~vb � rhTi � r �

ÿ
kbrhTi

� �23�

and the pore-scale boundary conditions become

~Tb � ~Ts at Abs �24�

~nbs � kbr ~Tb � ~nbs � ksr ~Ts � ~nbs �
ÿ
ks ÿ kb

�rhTi
at Abs

�25�

In this study, we shall consider that the time scales as-
sociated with the pore-scale equations are much smal-

ler than the time associated �t�� with the average
equations

�rcp �b
kb

` 2b
t�
� 1

and

�rcp �b
ks

` 2b
t�
� 1,

where `b and `s are the length scales associated with
the pore size �0`). This allows us to consider the clo-

sure problems as quasi-steady

�rcp �b~vb � r ~Tb ÿ r �
�
kbr ~Tb

�
� ÿ�rcp �b

@ hTi
@ t
ÿ �rcp �b~vb � rhTi � r �

ÿ
kbrhTi

�
:

�26�

Now using the average equation (22) to express the

term @ hTi=@ t,

�rcp �b~vb � r ~Tb

� r �
�
kbr ~Tb

�
� �

rcp �b
hrcpi

(
eb�rcp �bh~vbib � rhTi

ÿ r �
"ÿ

ebkb � esks
�rhTi

�
ÿ
kb ÿ ks

�
V

�
Abs

~nbs ~Tb dA� ebkbrh ~Tbib

� esksrh ~Tsis
#
ÿ eb�rcp �br � h ~Tb~vbib

)

ÿ �rcp �b~vb � rhTi � r �
ÿ
kbrhTi

�
: �27�

From the pore-scale boundary condition (25) we can
estimate the order of magnitude of the deviations as

~Tb, s � O
�
`b, shTi

L

�
, �28�

where L is the distance over which signi®cant vari-

ations in the averaged quantities occur. The analysis of
the order of magnitude of the di�erent terms in Eq.
(27) [2] shows that,

~vb � r ~Tb � O

 
vb ~Tb

`b

!
, �29�

ebh~vbi � rhTi � O

 
hvbib ~Tb

`b

!
, �30�

~vb � rhTi � O

 
vb ~Tb

`b

!
, �31�

ebr � h~vb ~Tbib � O
�
hvbib ~Tb

L

�
: �32�

Since the constraint on the length scales requires that
`b, s � L, the last term can be dropped relative to the

other three terms. Furthermore, from the other terms

r �
�
kbr ~Tb

�
� O

 
kb ~Tb

` 2b

!
, �33�

r � ÿeb, s kb, srhTi� � O

 
kb, s ~Tb, s

`b, sL

!
, �34�
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r �
"ÿ

kb ÿ ks
�

V

�
Abs

~nbs ~Tb dA

#
� O

�
k ~Tb

`L

�
, �35�

r � ÿkbrhTi� � O

 
kb ~Tb

`bL

!
, �36�

r �
�
eb, s kb, srh ~Tb, sib, s

�
� O

�
kb, sh ~Tb, sib, s

L 2

�
, �37�

and the last four terms can be neglected with respect
to the ®rst. Therefore, removing these terms, the

equations and boundary conditions for the tempera-
ture deviations become

�rcp �b~vb � r ~Tb

� r �
�
kbr ~Tb

�
ÿ �rcp �b

"
~vb ÿ

eb�rcp �b
hrcpi h~vbi

b

#
� rhTi �38�

~Tb � ~Ts at Abs �39�

~nbs � kbr ~Tb � ~nbs � ksr ~Ts � ~nbs �
ÿ
ks ÿ kb

�rhTi
at Abs

�40�

The same can be done for the s-phase to obtain

0 � r �
ÿ
ksr ~Ts

�
� �rcp �s

"
eb�rcp �b
hrcpi

#
h~vbib � rhTi: �41�

There are some macroscopic source terms involving

rhTi in these equations. So a closed form of the Eq.
(22) can be obtained if the deviations are represented
in terms of these macroscopic terms:

~Tb � ~f � rhTi �42�

~Ts � ~g � rhTi �43�

We now introduce the deviation representations (42)
and (43) in the deviation equations (38) and (41) to
obtain

�rcp �b~vb �
�
r~f
�

� r
�
kbr~f

�
ÿ �rcp �b

"
~vb ÿ

eb�rcp �b
hrcpi h~vbi

b

#
�44�

0 � r � ÿksr~g�� �rcp �s
"
eb�rcp �b
hrcpi

#
h~vbib �45�

~f � ~g at Abs �46�

kb ~nbs �
�
r~f
�
� ks ~nbs �

ÿr~g�� ÿks ÿ kb
�
~nbs

at Abs

�47�

Introducing these representations in Eq. (22) gives the
macroscopic equations for the one-equation model:

hrcpi@ hTi
@ t
� eb�rcp �bh~vbib � rhTi

� r �
�
KeffrhTi

�
: �48�

In this equation, the e�ective thermal dispersion tensor

is given by

Keff �
ÿ
ebkb � esks

�
I� ebkbtb � esksts

ÿ eb�rcp �bD, �49�

and the second-order tensors tb, s and D by

tb, s � 1

Vb, s

�
Abs

~nbs, sb ~f dA �50�

D � 1

Vb

�
Vb

~vb ~f dV �51�

In obtaining Eq. (48) the last two third-order terms in
hTi in Eq. (22) have been neglected.
The solutions to the two closure problems (44) and

(45), the vectors ~f and ~g, can be obtained within about
a same constant. Nevertheless, this constant is very im-
portant for evaluating the e�ective thermal dispersion
tensor. This indetermination has to be removed using

Eqs. (42) and (43) in Eq. (18)

0 �
h
eb�rcp �bh~fib � es�rcp �sh~gis

i
� rhTi �52�

and therefore

eb�rcp �bh~fib � es�rcp �sh~gis � 0: �53�

An important point must be emphasized here. This

new closure does not require an absolute local thermal
equilibrium, i.e. h~fib � h~gis � 0: Moreover, the exact
value of the disequilibrium, i.e. the values of h~fib or

h~gis related by Eq. (53), play a role in determining the
thermal dispersion tensor.
Now as a demonstration of the exactitude of the
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above approach, we will prove it using the classical
homogenization technique.

4. Homogenization method

As we already know, two length scales are associ-
ated with this problem: the macroscopic length L as-
sociated with the dimension of the porous medium, i.e.

the distance over which signi®cant variations in the
averaged temperature occur; and the microscopic
characteristic length ` associated with the pore size,

which is of the same order of magnitude as the peri-
odic cell dimension. The mathematical procedure
employed here is a multiple scale expansion [3], and we
shall apply it to up-scale the thermal dispersion in the

porous medium. The procedure developed here is simi-
lar to that one employed by Bloch and Auriault [6] for
heat transfer in non-saturated porous media. For this

purpose, two independent coordinate systems are
introduced, x for the macroscopic scale and y for the
microscopic scale. This assumes that the ratio e � `=L
is small.
Let us now introduce the dimensionless form of Eqs.

(1)±(4)

@Tb

@ t�
� Pe ~v

�
b � r�Tb � r�2Tb �54�

ab
as

@Ts

@ t�
� r�2Ts �55�

Tb � Ts at Abs �56�

kb
ks

ÿr�Tb
� � ~nbs � �r�Ts � � ~nbs at Abs �57�

Here, t� � abt=` 2, Pe � vref`=ab is the PeÂ clet number,
~v
�
b � ~vb=vref where vref is a reference velocity character-
istic of the average ¯uid velocity, and r� � `r: In the

following, we shall consider that the ratios of heat con-
ductivity �kb=ks� and thermal di�usivity �ab=as� are of
the order of magnitude O�1�:
Due to the separation of scales, we de®ne two

dimensionless variables x � � x=L and y� � y=` associ-
ated with the macroscopic scale L and with the micro-
scopic scale, respectively. Since the two space variables

x and y are independent,

r� � `r � `ÿrx � ry� � `� 1

L
r�x �

1

`
r�y
�

� Er�x � r�y : �58�

We also consider here that two time scales are associ-

ated with the thermal dispersion macroscopic problem
at the macroscopic scale: one time scale characteristic

for convection �L=vref � and another for di�usion
�L 2=ab�: Thus, %

t�c �
vref t

L
and t�d �

abt
L 2

�59�

leads to

@

@ t�
� ePe

@

@ t�c
� E 2

@

@ t�d
, �60�

and we must look for T�x �, y�,t�c , t�d� verifying

ePe
@Tb

@ t�c
� E 2

@Tb

@ t�d
� Pe ~v

�
b �
ÿr�yTb � Er�xTb

�
� ÿr�y � Er�x

� � ÿr�yTb � Er�xTb
� �61�

ab
as

�
EPe

@Ts

@ t�c
� E 2

@Ts

@ t�d

�
� ÿr�y � Er�x

� � ÿr�yTs � Er�xTs
� �62�

and

Tb � Ts at Abs �63�

kb
ks

ÿr�yTb � Er�xTb
� � ~nbs � ÿr�yTs � Er�xTs

� � ~nbs
at Abs

�64�

Di�erent results may be obtained depending on the

order of magnitude of the PeÂ clet number Pe [3]. For
Pe � O�en� with nr2, the homogenized equation is a
conductive equation with the equivalent classical con-

ductivity of the di�usion problem for a two-phase sys-
tem. For Pe � O�e�, to the preceding equation a
convective term corresponding to the average move-

ment of the ¯uid �b� phase must be added. For Pe �
O�en� with nRÿ 1, the multiple scale method is unable
to provide a homogenized behavior. The most interest-

ing situation is Pe � O�e0�:
It can be easier to work with dimensional variables,

with the recalling the order of magnitude of the di�er-
ent terms. Hence,

E
@Tb

@ tc
� E 2

@Tb

@ td
� ~vb �

ÿryTb � ErxTb
�

� ÿry � Erx
� � �abÿryTb � ErxTb

�� �65�
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E
@Ts

@ tc
� E 2

@Ts

@ td

� ÿry � Erx
� � �asÿryTs � ErxTs

�� �66�

and

Tb � Ts at Abs �67�

kb
ÿryTb � ErxTb

� � ~nbs � ks
ÿryTs � ErxTs

� � ~nbs
at Abs

�68�

The spatially periodic velocity ®eld ~vb is dependent
only on the y variable, and is divergence-free (incom-

pressible ¯uid)

ry � ~vb � 0: �69�

Here, it is assumed that the temperatures can
be expanded in the form of an asymptotic expansion
in e

Tb�x, y, tc, td � �
Xk�1
k�0

EkT k
b�x, y, tc, td �, �70�

Ts�x, y, tc, td � �
Xk�1
k�0

EkT k
s�x, y, tc, td �, �71�

At the order E0, T 0
b and T 0

s should satisfy

~vb � ryT 0
b � ry �

�
abryT 0

b

�
�72�

0 � ry �
�
asryT 0

s

�
�73�

and

T 0
b � T 0

s at Abs �74�

kb

�
ryT 0

b

�
� ~nbs � ks

�
ryT 0

s

�
� ~nbs at Abs �75�

along with periodic boundary conditions at the edge of
the unit cell. The solution to the above problem is sat-

is®ed by

T 0
b�x, y, tc, td � � T 0

s�x, y, tc, td � � T 0�x, tc, td �: �76�

From the work of Auriault and Lewandowska [7]

this condition, Eq. (76), means that a relative local
equilibrium is met as a ®rst-order approximation of
the temperature. The authors consider that there

exists a local non-equilibrium if this result is not
obtained.
The next order, E1, yields

@T 0

@ tc
� ~vb �

�
ryT 1

b � rxT 0
�

� ry �
h
ab
�
ryT 1

b � rxT 0
�i

�77�

@T 0

@ tc
� ry �

h
as
�
ryT 1

s � rxT 0
�i

�78�

and

T 1
b � T 1

s at Abs �79�

kb

�
ryT 1

b � rxT 0
�
� ~nbs

� ks

�
ryT 1

s � rxT 0
�
� ~nbs

at Abs

�80�

with periodic boundary conditions in y at the unit cell
boundaries.Taking the volume average over the unit

cell �V � Vb [ Vs� of Eqs. (77) and (78) and adding
the results leads to

hrcpi@T
0

@ tc
� 1

V

�
Vb

�rcp �b~vb �
�
ryT 1

b � rxT 0
�

dV

� 0, �81�

where hrcpi � eb�rcp�b�es�rcp�s is the average heat ca-
pacity per unit volume of the medium.
As ~vb � ryT 1

b � ry � �~vbT 1
b� and ~vb and T 1

b are

spatially y-periodic, with the no-slip condition on Abs

hrcpi@T
0

@ tc
� eb�rcp �bh~vbib � rxT 0 � 0 �82�

and we see that at the ®rst order the transport at the

macroscopic scale is only convective.
Using this equation to replace the transient terms in

Eqs. (77) and (78), we obtain

�rcp �b~vb � ryT 1
b

� ry �
�
kbryT 1

b

�
ÿ �rcp �b

"
~vb ÿ

eb�rcp �b
hrcpi h~vbi

b

#

� rxT 0 �83�

and

0 � ry �
�
ksryT 1

s

�
� �rcp �s

"
eb�rcp �b
hrcpi

#
h~vbib

� rxT 0 �84�
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with the appropriate boundary conditions given by
Eqs. (79) and (80).

This problem, Eqs. (83) and (84), is similar to the
one encountered in Section 3.3, and we propose the
solution in the form

T 1
b � ~f�y� � rxT 0�x, tc, td � � �T 1�x, tc, td �, �85�

T 1
b � ~g�y� � rxT 0�x, tc, td � � �T 1�x, tc, td � �86�

where ~f and ~g are solutions of the problems (44)±(47)
with periodic boundary conditions over the edges of

the unit cell. It is interesting to recall that ~f and ~g are
determined within about the same constant and, as we
show further on, the determination of this constant is
important for the calculation of the thermal dispersion

tensor.
Lastly, at order E 2, we have

@T 1
b

@ tc
� @T

0

@ td
� ~vb �

�
ryT 2

b � rxT 1
b

�
� ry �

h
ab
�
ryT 2

b � rxT 1
b

�i
� rx �

h
ab
�
ryT 1

b

� rxT 0
�i

�87�

@T 1
s

@ tc
� @T

0

@ td
� ry �

h
as
�
ryT 2

s � rxT 1
s

�i
� rx

h
as
�
ryT 1

s � rxT 0
�i

�88�

and

T 2
b � T 2

s at Abs �89�

kb

�
rxT 1

b � ryT 2
b

�
� ~nbs

� ks

�
rxT 1

s � ryT 2
s

�
� ~nbs at Abs �90�

In order to ®nd the average equation at order E 2, we
take the volume average of Eqs. (87) and (88) and add
the results:

hrcpi
�
@ hT 1i
@ tc

� @T
0

@ td

�
� 1

V

�
Vb

�rcp �b~vb �
�
ryT 2

b

� rxT 1
b

�
dV � 1

V

�
Vb

n
ry �

h
kb

�
ryT 2

b

� rxT 1
b

�i
� rx �

h
kb

�
ryT 1

b � rxT 0
�io

dV

� 1

V

�
Vs

n
ry �

h
ks

�
ryT 2

s � rxT 1
s

�i
� rx �

h
ks

�
ryT 1

s � rxT 0
�io

dV

�91�

where

hrcpihT 1i � eb�rcp �bhT 1
bib � es�rcp �shT 1

sis: �92�

Using periodic conditions and the no-slip condition

over Abs, it is easy to show that

hrcpi
�
@ hT 1i
@ tc

� @T
0

@ td

�
� 1

V

�
Vb

�rcp �b~vb � rxT 1
b dV �

1

V

�
Vb

rx �
h
kb

�
ryT 1

b � rxT 0
�i

dV

� 1

V

�
Vs

rx �
h
ks

�
ryT 1

s � rxT 0
�i

dV:

�93�

Using (85) in the second term on the left-hand side,

1

V

�
Vb

�rcp �b~vb � rxT 1
b dV

� 1

V

�
Vb

�rcp �brx �
�
T 1

b~vb
�

dV

� eb�rcp �brx � hT 1
b~vbib

� eb�rcp �brx �
�
h~vb~f ib � rxT 0 � �T

1h~vbib
�

�94�

and, for the other two terms,

1

V

�
Vb

rx �
h
kb

�
ryT 1

b � rxT 0
�i

dV

� rx �
nh

ebkb
�
hry~f ib � I

�i
� rxT 0

o
�95�

1

V

�
Vs

rx �
h
ks

�
ryT 1

s � rxT 0
�i

dV

� rx �
nh

esks
�
hry ~gis � I

�i
� rxT 0

o
�96�

the average equation at order E 2 is
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hrcpi
�
@ hT 1i
@ tc

� @T
0

@ td

�
� eb�rcp �brx �

�
h~vb~f ib � rxT 0 � �T

1h~vbib
�

� rx �
nhÿ

ebkb � esks
�
I� ebkbhry~f ib

� eskshry ~gis
i
� rxT 0

o
:

�97�

Lastly, the average transport equation (exact at the
order E 2� can be obtained by adding Eqs. (82) and
(97):

hrcpi
�
E
@T 0

@ tc
� E 2

�
@ hT 1i
@ tc

� @T
0

@ td

��
� eb�rcp �bh~vbib � rx

ÿ
ET 0 � E 2 �T

1
�

� rx �
nhÿ

ebkb � esks
�
I� ebkbhry~f ib

� eskshry ~gis
i
� E 2rxT 0

o
� rx �

nh
eb�rcp �bh~vb~f ib

i
� E 2rxT 0

o
:

�98�

But we know from Eqs. (85), (86) and (92) that

hT 1i � 1

hrcpi
�
eb�rcp �bh~f ib � es�rcp �sh~gib

�
� rxT 0 � �T

1
, �99�

and we can remove the unknown constant in the sol-
ution to the problem in ~f and ~g by requiring that

eb�rcp �bh~f ib � es�rcp �sh~gib � 0: �100�

At order E 2, the average temperature is given by

hT i � T 0 � EhT 1i � T 0 � E �T
1

and the macroscopic
equation is given by

hrcpi@ hT i
@ t
� eb�rcp �bh~vbib � rhT i

� r �
�
Keff � rhT i

�
� O�E3 �, �101�

where

Keff �
ÿ
ebkb � esks

�
I� ebkbhry~f ib � eskshry ~gis

ÿ eb�rcp �bh~vb~f ib: �102�

We remark that the two methods (volume average and
homogenization) lead to the same macroscopic average
equation and closure problems.

5. Results for a strati®ed medium

Here, we make use of the analytical results for the
closure problems for the fully developed ¯ow ®eld
between two plates in order to validate and compare

with the results of a numerical experiment obtained by
the method of random walks. The associated unit cell
is represented in Fig. 1, and the ¯ow in the b-phase
corresponds to Poiseuille's ¯ow.
For the longitudinal coe�cient in our case (see

Appendix A) we ®nd

Kxx � kk � e3bPe
2kb

"
17

140
ÿ gb

5
� g 2b

12

� gb
ÿ
1ÿ gb

�
12

ab
as

�es
eb

� 2
#
, �103�

where kk��ebkb�esks�, Pe is the PeÂ clet number

Pe � hui
bH

ab
� hui

b�h� e�
ab

�104�

and gb�eb�rcp�b=hrcpi:
As we have considered in Section 4, ab=as is of the

order of magnitude O�1� and Eq. (103) is not valid for
as � 0: The only way to obtain a result for ks40 is to

make �rcp�s40: In this case, where gb41 we have the
classic expression for the longitudinal coe�cient.

5.1. Random walks

In this method, the individual trajectories of con-
vected and di�used thermions are calculated. A ther-

Fig. 1. Unit cell for parallel ¯ow between two planes.
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mion is a particle without mass that has a certain
quantity of energy (enthalpy), as introduced by

Batycky et al. [8] to designate a thermal tracer. The
particles are characterized by their positions in space
at a given time. Our goal is to calculate the ®rst three

moments for the displacement of a large number of
thermions emanating from a localized source. From the
literature (see, for example, [9,10]) we know that the

total moment of order zero, M0, is constant and rep-
resents the total quantity of energy released in the
medium, that the ®rst moment represents the average

position of the thermions

~M1 �
��1
ÿ1

��1
ÿ1

~rhrcpihT i dx dy, �105�

and that the second moment describes the spreading of
the thermions

M2 �
��1
ÿ1

��1
ÿ1

~r~rhrcpihT i dx dy: �106�

At the limit as time approaches in®nity, from Eqs.

(48) and (101), the time derivate of the ®rst
moment is the mean interstitial ¯uid velocity multi-
plied by gb

lim
t41

d ~M
�
1

dt
� lim

t41
1

M0

d ~M1

dt
� gbh~vbib �107�

and the time derivate of the centered second
moment, M2, is equal to twice the e�ective thermal
dispersion tensor divided by hrcpi

lim
t41

dM2

dt
� lim

t41
d

dt

�
M
�
2 ÿ ~M

�
1
~M
�
1

�
� 2

Keff

hrcpi : �108�

At time t � 0, a large number of thermions is

released, randomly distributed, at position x � 0,
which means an impulse of heat equal to
Qdt�0dx�0: At each stipulated time step dt the pos-

ition of each thermion is updated by adding a con-
vective displacement and a random di�usive one

~ri�t� dt� � ~ri�t� � ~d
c

i � dd
i , �109�

where ~ri is the vector position of the ith thermion,
dc
i � ~vb�~ri �dt is the displacement due to the convection,

and ~d
d

i due to the di�usion.
The velocity ~vb�~ri � is obtained from the analytical

solution of the Poiseuille ¯ow

u � huib
"
3

2
ÿ 6

�
y

h

� 2
#
: �110�

For the di�usion, we have chosen to make alternate

displacements parallel to the x and y axis. This tech-
nique consists in moving the thermion, for a given time

step dt, ®rst to the left or right in the x direction, and
then up or down in the y direction in the next time
step. At each time, the probability of a move to the

left, right, up or down is chosen randomly. The magni-
tude of the displacements are constant and are given
by

dxb, s � dyb, s � 2
�������������
ab, sdt

p
: �111�

The choice of b or s depends on whether the thermion
is in the ¯uid �b-phase) or in the solid �s-phase).
Whenever a wall collision occurs, a probability of

passage into the solid (or ¯uid) is assigned to the
particle. From the results of Appendix B, the prob-

ability law of passage into the solid phase is given
by

pb4s � bs
bb � bs

�112�

and into the ¯uid phase

ps4b � bb
bb � bs

�113�

where bb; s�
��������������������������rcp�b; skb; s

p
: Further, the magnitude of

the displacement should change as the particles cross

the interface.
When a thermion is in a position to cross an inter-

face, it is stopped at the boundary between the b and

s phases before the passage probability is determined.
If a randomly chosen number is less than the prob-
ability ps (or pb), then the particle will penetrate the

solid (or ¯uid). Otherwise, it makes an elastic rebound.

Fig. 2. Wall collision: (1) initial position, (2) at the boundary,

(3) passage to the s-phase and (3 ') elastic shock.
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But the displacement time must be conserved. So for a
particle that has spent a time step dt 0b to reach at solid
wall, a fraction of time dtbs must be added:

dtbs � dtÿ dt 0b � dtÿ dy 0b 2
4ab

, �114�

where dy 0b corresponds to the displacement in the time
interval dt 0b:
This time will allow the particle to make a displace-

ment equal to

dys � 2
�������������
asdtbs

p �115�

if the passage occurs, and

dyb � ÿ2
�������������
abdtbs

p
�116�

in the case of an elastic shock, as illustrated in Fig. 2.

5.2. Numerical data

The tested cases studied here have been realized for
the following physical characteristics: �rcp�b �
4:0� 106 J mÿ3 Kÿ1, kb � 0:6 W mÿ1 Kÿ1, �rcp�s �
2:0� 106 J mÿ3 Kÿ1 and ks � 1:2 W mÿ1 Kÿ1. These
parameters are approximately consistent with a system

of water and glass. For the unity cell we take a unit
length and height.
In order to check the exactitude of the numerical

results for the random walks method, as very few cases

can be solved analytically, we have used the well-
known result for the planar Poiseuille ¯ow between
two insulated horizontal walls separated by a gap h for

the simple case of a strati®ed medium. For this case,
eb � 1 and the e�ective longitudinal coe�cient is given
by

Kxx

kb
� 1� Pe 2

210
�117�

All the numerical results have been calculated with

15,000 particles, for a dimensionless time t� �t� �
abt=H 2� � 2 and for a dimensionless time step dt� �
0:4� 10ÿ4: Here, the PeÂ clet number and the coe�cient

Kxx are both obtained by linear regressions when

the linear process is reached for the ®rst moment ~M
�
1

and centered second moment M2 as function of

time. In Table 1, we show the results obtained for

eb � 1: As we can see, good agreement is achieved

between the theoretical values and the numerical

results.

In the Fig. 3, the calculated values of the longitudinal

thermal coe�cient Kxx=kk are presented for a strati®ed

Fig. 3. Longitudinal thermal dispersion coe�cient Kxx=kk for

a strati®ed medium.

Table 1

Thermal conductivity coe�cient Kxx=kb for eb � 1

Theoretical Numerical Error%

Pe Kxx=kb Pe Kxx=kb

1.0 1.01 1.00 0.99 ÿ1.98
5.0 1.12 5.01 1.09 ÿ2.68
10.0 1.48 10.01 1.43 ÿ3.38
50.0 12.91 50.07 12.78 ÿ1.01
100.0 48.62 100.14 48.46 ÿ0.33
500.0 1191.48 500.69 1193.61 +0.18

1000.0 4762.91 1001.38 4774.34 +0.24
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medium as function of the volume fraction eb, and for a
dimensionless time approximately equal to 1. These

results were obtained for three di�erent values of the
PeÂ clet number (100, 500 and 1000) and for the same par-
ameters as those used in the test case, except for the

number of particles and dimensionless time step, which
are 30,000 and 0.25 � 10ÿ4 here. The numerical results
agree quite well with the theoretical prediction of our

model for this case. The numerical method of random
walks gives the longitudinal coe�cients with an error
of less than or equal to 3% relative to the theoretical,

except for a volume fraction of 0.9, where the error
reaches 4.2% for a PeÂ clet number of 1000. This is
probably due in part to the small thickness of the solid
phase. To overcome this di�culty, a much smaller

time step than 0.25 � 10-4 would have to be used,
along with a greater number of particles.
In this paper, we are mainly interested in showing

the validity of the one-model equation developed here,
and the versatility of the random walks method. More
sophisticated unit cells can be considered, with a hy-

drodynamic problem governed by the (Navier±)Stokes
equations, and such developments are currently under-
way to generate numerical data in more complex situ-

ations.

6. Conclusion

The thermal dispersion in a spatially periodic por-

ous medium has been investigated using both the
method of volume averaging with closure and the
method of homogenization in order to obtain a one-

equation model. Both methods agree in deriving the
same closure problem for calculating the macroscopic
e�ective thermal dispersion tensor Keff : The important
point to be outlined here with the volume averaging

approach is that the b-phase and the s-phase of the
medium cannot be in absolute thermal equilibrium
�hTbib 6�hTsis� even though a steady-state closure is

assumed.
In order to test the validity of the above

approach in a simple case (strati®ed medium), the

results of a numerical experiment using the random
walks of heat particles (thermions ) are compared
with the calculated macroscopic e�ective thermal
dispersion tensor obtained with an analytical sol-

ution for the closure problem. Very good agreement
is achieved.
This study clearly demonstrates the validity (and

also the limitations) of the one-equation model for
describing the thermal dispersion process inside a por-
ous medium. The random walk method seems to be a

powerful tool to obtain the macroscopic e�ective ther-
mal dispersion tensor numerically and can be applied
in the case of more complex geometries.

Acknowledgements

This work was carried out while H. P. Amaral
Souto was in a sabbatical year at the LEMTA-INPL.
He would like to thank the ``CAPES, Fundac° ao Coor-

denac° ao de Aperfeic° oamento de Pessoal de NõÂ vel Su-
perior, Brazil'' for its ®nancial assistance (Grant BEX
1444/97-2). Christian Moyne would like to thank the

``FAPERJ, Fundac° aÄ o de Amparo aÁ Pesquisa do
Estado do Rio de Janeiro, Brazil'' for its ®nancial as-
sistance (Grant E26/170.525/97).

Appendix A

For the one-dimensional unit cell shown in Fig. 1,
the closure equations are

d 2fx
dy 2
� 1

ab

�
uÿ gbhuib

�
�A1�

and

d 2gx
dy 0 2

� ÿ 1

as
gbhuib �A2�

where gb � eb�rcp�b=hrcpi and ab; s � kb; s=�rcp�b; s are

the thermal di�usivity of the b and s phases.
After integration, we have

fx � e 2b Pe H

"�
3

4
ÿ gb

2

��
y

h

� 2

ÿ1
2

�
y

h

�4

�A
#

�A3�

and

gx � ÿe 2b Pe H

"
ab
as

�es
eb

� 2 gb
2

�
y 0

e

� 2

�B
#

�A4�

where Pe � huibH=ab is the PeÂ clet number and H �
h� e is the total height of the unit cell.
From the boundary condition at the b±s interface

for y � ÿh=2 for the b-phase and y 0 � e=2 for the s-
phase, we obtain

A� B � gb
8

"
1ÿ ab

as

�es
eb

� 2
#
ÿ 5

32
: �A5�

Now if we take the intrinsic volume average of fx and gx

h f ibx � e 2b Pe H

�
9

160
ÿ gb

24
� A

�
, �A6�

hgxib � e 2b Pe H

"
gb
24

ab
as

�es
eb

� 2

�B
#

�A7�

and use these results in
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eb�rcp �bhfxib � es�rcp �shgxis � 0, �A8�

we get

eb�rcp �bAÿ es�rcp �sB

� eb�rcp �b
�
gb
24
ÿ 9

160

�
� es�rcp �s

gb
24

ab
as

�es
eb

� 2

:
�A9�

The value of A can be obtained by solving the system of
equations (A5) and (A9)

A � ÿ 5

32
� 9

40
gb ÿ

g 2b
12
ÿ gb

ÿ
1ÿ gb

�
12

ab
as

�es
eb

� 2

: �A10�

We can now ®nd the resulting macroscopic transport
coe�cient Kxx

Kxx �
ÿ
ebkb � esks

�ÿ eb�rcp �bhufxib: �A11�

We begin by determining hufxib and the result is simply

hufxib � e 2bPehuibH
�

39

1120
ÿ gb

40
� A

�
: �A12�

Thus, after substitution we ®nally obtain

Kxx � kk � e3bPe
2kb

"
17

140
ÿ gb

5
� g 2b

12

� gb
ÿ
1ÿ gb

�
12

ab
as

�es
eb

� 2
#

�A13�

where kk��ebkb�esks�:

Appendix B

Solving the system of equations for temperatures
Tb and Ts for a Dirac impulse of heat both in time

and space at the interface b±s of two semi-in®nity
media

@Tb

@ t
� ab

@ 2Tb

@y 2

@Ts

@ t
� as

@ 2Ts

@y 2
�B1�

along with the boundary conditions

Tb � Ts at y � 0 �B2�

Tb � 0 at y4 ÿ1 �B3�

Ts � 0 at y4 ÿ1 �B4�

kb
@Tb

@y
� ks

@Ts

@y
Qdt�0 at y � 0 �B5�

we get the total energy distribution

Qb

Q
�
�0
ÿ1

�rcp �b�����
pt
p � �����������������

�rcp �bkb
q

�
�����������������
�rcp �sks

q �

� exp

 
ÿ y 2

4abt

!
dy �

�����������������
�rcp �bkb

q
�����������������
�rcp �bkb

q
�

�����������������
�rcp �sks

q
�B6�

and

Qs

Q
�
��1
0

�rcp �s�����
pt
p � �����������������

�rcp �bkb
q

�
�����������������
�rcp �sks

q �

� exp

�
ÿ y 2

4ast

�
dy �

�����������������
�rcp �sks

q
�����������������
�rcp �bkb

q
�

�����������������
�rcp �sks

q
�B7�

This time-independent distribution gives the prob-
ability for a given particle located at the interface
to jump either into the b-phase or into the s-phase.
The same result may be obtained by solving a two-

dimensional problem with a point source at the b±s
interface.
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